发布者:抗性基因网 时间:2023-06-07 浏览量:191
摘要
出身背景
大肠杆菌、肠杆菌、肺炎克雷伯菌和肠球菌是大熊猫常见的肠道细菌,包括机会性病原体。大熊猫是一种濒危物种,被世界野生动物基金会列为易危物种。持续监测大熊猫细菌分离株中抗微生物耐药性(AMR)的出现,不仅对大熊猫的保护至关重要,对公众健康也至关重要。
后果
共有166株大肠杆菌,68株肠杆菌,116株 从166只大熊猫的粪便样本中采集了肺炎克雷伯菌和117株肠球菌。在抗微生物药敏试验中,144株大肠杆菌分离株,66株肠杆菌分离株。110 肺炎克雷伯菌分离株和43株肠球菌分离株对至少一种抗菌药物具有耐药性。耐药菌株携带抗微生物基因(ARGs),包括sul3、blaTEM、blaSHV和tetA。bla类型患病率的差异表明,大肠杆菌、肠杆菌和肺炎克雷伯菌分离株对β-内酰胺耐药的遗传基础不同。选择对16种抗菌药物具有耐药性的肺炎克雷伯菌K85菌株进行全基因组测序。基因组包含Col440I、IncFIBK和IncFIIK质粒,基因组中总共预测了258个ARG;179个预测的ARGs是外排泵基因。肺炎克雷伯菌K85基因组中的β-内酰胺酶基因blaCTX-M-3和blaTEM-1的遗传环境与其他已测序的肺炎克雷伯菌基因组中的遗传环境相对相似。在比较大熊猫年龄组时,大肠杆菌、肺炎克雷伯菌和肠杆菌的耐药率存在差异。分离株表明,应区别对待不同年龄大熊猫的感染。
结论
大熊猫的细菌分离株普遍存在抗微生物耐药性,这表明肠道细菌可能对圈养大熊猫的健康构成严重风险。肺炎克雷伯菌K85基因组中的耐药基因与插入序列和整合子整合酶基因相关,这意味着抗微生物耐药性有可能进一步传播。
Abstract
Background
Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp., common gut bacteria in giant pandas, include opportunistic pathogens. The giant panda is an endangered species, classified as vulnerable by the World Wildlife Foundation. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from giant pandas is vital not only for their protection but also for public health.
Results
A total of 166 E. coli, 68 Enterobacter spp., 116 K. pneumoniae and 117 Enterococcus spp. isolates were collected from fecal samples of 166 giant pandas. In the antimicrobial susceptibility tests, 144 E. coli isolates, 66 Enterobacter spp. isolates, 110 K. pneumoniae isolates and 43 Enterococcus spp. isolates were resistant to at least one antimicrobial. The resistant isolates carried antimicrobial resistance genes (ARGs), including sul3, blaTEM, blaSHV and tetA. The differences in the prevalence of the bla types implied that the genetic basis for β-lactam resistance among the E. coli, Enterobacter spp. and K. pneumoniae isolates was different. The strain K. pneumoniae K85 that was resistant to sixteen antimicrobials was selected for whole genome sequencing. The genome contained Col440I, IncFIBK and IncFIIK plasmids and altogether 258 ARGs were predicted in the genome; 179 of the predicted ARGs were efflux pump genes. The genetic environment of the β-lactamase genes blaCTX-M-3 and blaTEM-1 in the K. pneumoniae K85 genome was relatively similar to those in other sequenced K. pneumoniae genomes. In comparing the giant panda age groups, the differences in the resistance rates among E. coli, K. pneumoniae and Enterobacter spp. isolates suggested that the infections in giant pandas of different age should be treated differently.
Conclusions
Antimicrobial resistance was prevalent in the bacterial isolates from the giant pandas, implying that the gut bacteria may pose serious health risks for captive giant pandas. The resistance genes in the genome of K. pneumoniae K85 were associated with insertion sequences and integron-integrase genes, implying a potential for the further spread of the antimicrobial resistance.
https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-022-02514-0