当前位置 :首页>研究报道

食物垃圾渗滤液厌氧消化过程中消化器微生物组中磺酰胺抗性基因的传播

发布者:抗性基因网 时间:2023-06-12 浏览量:265

摘要
      食物垃圾(FW)中磺酰胺耐药性基因的突出,以及高强度有机FW在厌氧消化(AD)中的利用增加,以提高甲烷的产生,引起了世界各地污水处理厂对公众健康的严重担忧。在这方面,评估了不同磺酰胺抗性基因(sul1和sul2)在FW渗滤液AD期间的传播模式及其对消化器核心微生物群的影响。与没有磺胺类抗生素(SA)的FWL消化器相比,FWL消化池中存在的各种磺胺类抗生素将AD期间的最终甲烷产量提高了37%。放线菌门、拟杆菌门、氯弯菌门、厚壁菌门、变形菌门和增效菌门中的微生物种群向水解、产酸和产乙酰细菌转移,这是由于SA通过主动转运诱导的底物消化和吸收;丁酸盐、丙酸盐和丙酮酸盐代谢;糖酵解;糖异生;柠檬酸盐循环;和磷酸戊糖途径。随着AD的进展,甲烷菌的初始优势(89-96%)下降到47-53%,并在AD结束时SA浓度最高的消化器中向甲烷菌转移(40%)。sul1的传播依赖于基于1类整合素基因(intl1)的水平基因转移到Chloroflexi、厚壁菌门和Patescibacteria的致病成员,而sul2独立于intl1被传递到Synergistota。在产甲烷过程中,低易感性和利用SA的能力使产甲烷古菌免受选择压力的影响,从而阻止它们与sul或intl1基因相互作用,从而将抗生素耐药性发展的风险降至最低。在SA存在的情况下,FWL的AD过程中,观察到核心微生物群中出现阳离子抗菌肽、万古霉素和β-内酰胺耐药性,这表明细菌转化引起的多药耐药性可能会通过废水污泥处理导致环境耐药性的增加。
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89–96 %) declined to 47–53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.

https://www.sciencedirect.com/science/article/abs/pii/S030438942300482X