发布者:抗性基因网 时间:2023-06-12 浏览量:376
摘要
由于人类和海洋生物中抗生素耐药性基因的发展,在水生环境中检测抗生素是一个严重的健康问题。目前的研究旨在以一种简单且“更环保”的路线在膨润土中合成高效的异质结双金属纳米催化剂(Cu0+Ag0)。番石榴叶的植物化学物质在膨润土支撑介质上原位合成Cu0和Ag0纳米颗粒。先进的分析方法对纳米材料进行了广泛的表征。潜在的抗生素(阿莫西林和磺胺二甲嘧啶)利用UV-A和LED(可见光)光源在类似光芬顿的过程中进行处理。膨润土中的双金属(Cu0+Ag0)对阿莫西林和磺胺二甲嘧啶的光诱导降解表现出协同作用。pH、初始污染物浓度和干扰离子的存在的影响优化了去除效率,并证明了对反应机理的深入了解。在使用(Cu0+Ag0)@膨润土纳米催化剂的UV-A照射下,AMX和SMZ的光Fenton样降解分别为84%和74%。类似地,使用UV-a辐射,该过程矿化了大量的这些污染物,即分别为66%和62%的SMX和SMZ。,从而提高了催化剂的适用性。纳米催化剂在反应器操作中表现出更大的稳定性,并且Cu(II)在反应途径中的浸出程度非常低。真实的水影响推断了新型纳米催化剂在扩大阿莫西林和磺胺二甲嘧啶污染水净化过程中的潜力。
Abstract
Detecting of antibiotics in the aquatic environment is a serious health concern due to the development of antibiotic-resistant genes in humans and marine life. The current investigation aims to synthesize highly efficient heterojunction bimetallic nanocatalyst (Cu0 + Ag0)@Bentonite in a facile and ‘greener’ route. In situ, the phytochemicals of P. guajava leaves synthesize the Cu0 and Ag0 nanoparticles onto the bentonite support media. The advanced analytical methods characterize the nanomaterials extensively. The potential antibiotics (amoxicillin and sulfamethazine) are treated in photo-Fenton-like processes utilizing the UV-A and LED (Visible) light sources. The bimetallic (Cu0 + Ag0)@Bentonite exhibited a synergized in the photo-induced degradation of amoxicillin and sulfamethazine. The effect of pH, initial pollutant concentrations, and the presence of interfering ions optimize the removal efficiency and demonstrate insights into the reaction mechanism. The photo-Fenton-like degradation of AMX and SMZ was found to be 84 % and 74 %, respectively, under the UV-A illumination employing (Cu0 + Ag0)@Bentonite nanocatalyst. Similarly, the process mineralizes a significant amount of these pollutants, i.e., 66 % and 62 % of SMX and SMZ, respectively, using UV-A irradiation., enhancing the applicability of the catalyst. The nanocatalyst showed greater stability in the reactor operations, and Cu(II) leaches very minimally extent in the reaction pathways. The real water implications inferred the potential of novel nanocatalysts in scaling up the process for the decontamination of water contaminated with amoxicillin and sulfamethazine.
https://www.sciencedirect.com/science/article/abs/pii/S1383586622021980