当前位置 :首页>研究报道

抗菌纳米复合材料对霍乱弧菌生活方式的影响:薄膜生物膜,浮游生物和表面附着的生物膜。

发布者:抗性基因网 时间:2019-06-14 浏览量:987

摘要

霍乱弧菌是引起肠道疾病的重要人类病原体,在发展中国家具有高发病率。霍乱弧菌可以在浮游生物和生物膜生活方式之间切换。生物膜形成是传播,毒力和抗生素抗性的决定因素。由于细菌病原体观察到增强的抗生素抗性,抗微生物纳米材料已被用于通过阻止细菌生长和防止生物膜形成来对抗感染。在这项研究中,纳米复合材料沸石嵌入银(Ag),铜(Cu)或锌(Zn)的纳米颗粒(NP)的效果中的霍乱弧菌细胞浮游和生物膜评价在两种状态:防护膜(PB ),在气 - 液界面和表面附着的生物膜(SB)之间形成,形成固 - 液界面。每种纳米复合材料都具有独特的抗菌作用,不同地改变每种霍乱弧菌的生活方式。的ZEO-的AgNPs纳米复合抑制PB形成和4微克/毫升,和SB形成防止和消除浮游细胞和8微克/毫升。相比之下,纳米复合材料ZEO ZEO-和CuNPs ZnNPs霍乱弧菌影响生存能力但并不能完全避免细菌的生长。和转录水平,取决于类型生物膜和纳米颗粒,纳米复合材料改性VPSL,RBMA和BAP1,参与生物膜形成的基因的相对表达。此外,外膜蛋白OmpT,OmpU,OmpA和OmpW的相对丰度在PB和SB的处理中也不同。这项工作提供了用于影响纳米材料和结构,遗传和蛋白质组水平理解V.针对金属纳米颗粒霍乱反应机制的进一步研究的基础。


Vibrio cholerae is an important human pathogen causing intestinal disease with a high incidence in developing countries. V. cholerae can switch between planktonic and biofilm lifestyles. Biofilm formation is determinant for transmission, virulence and antibiotic resistance. Due to the enhanced antibiotic resistance observed by bacterial pathogens, antimicrobial nanomaterials have been used to combat infections by stopping bacterial growth and preventing biofilm formation. In this study, the effect of the nanocomposites zeolite-embedded silver (Ag), copper (Cu), or zinc (Zn) nanoparticles (NPs) was evaluated in V. cholerae planktonic cells, and in two biofilm states: pellicle biofilm (PB), formed between air-liquid interphase, and surface-attached biofilm (SB), formed at solid-liquid interfaces. Each nanocomposite type had a distinctive antimicrobial effect altering each V. cholerae lifestyles differently. The ZEO-AgNPs nanocomposite inhibited PB formation at 4 μg/ml, and prevented SB formation and eliminated planktonic cells at 8 μg/ml. In contrast, the nanocomposites ZEO-CuNPs and ZEO-ZnNPs affect V. cholerae viability but did not completely avoid bacterial growth. At transcriptional level, depending on the nanoparticles and biofilm type, nanocomposites modified the relative expression of the vpsL, rbmA and bap1, genes involved in biofilm formation. Furthermore, the relative abundance of the outer membrane proteins OmpT, OmpU, OmpA and OmpW also differs among treatments in PB and SB. This work provides a basis for further study of the nanomaterials effect at structural, genetic and proteomic levels to understand the response mechanisms of V. cholerae against metallic nanoparticles.


https://www.ncbi.nlm.nih.gov/pubmed/31188854